

DZone, Inc. | www.dzone.com

By James Sugrue

ABOUT UML

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 U

M
L

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#112

CONTENTS INCLUDE:
n	 About UML
n	 Structural Diagrams
n	 Behavioral Diagrams
n	 Interaction Diagrams
n	 Hot Tips and more...

Hot
Tip

UML Tools
There are a number of UML tools available, both
commercial and open source, to help you document
your designs. Standalone tools, plug-ins and UML
editors are available for most IDEs.

The Unified Modeling Language is a set of rules and notations
for the specification of a software system, managed and
created by the Object Management Group. The notation
provides a set of graphical elements to model the parts of
the system.

This Refcard outlines the key elements of UML to provide you
with a useful desktop reference when designing software.

Get over 90 DZone Refcardz
FREE from Refcardz.com!

Getting Started with UML

Diagram Types
UML 2 is composed of 13 different types of diagrams as
defined by the specification in the following taxonomy.

STRUCTURAL DIAGRAMS

Class Diagrams
Class diagrams describe the static structure of the classes
in your system and illustrate attributes, operations and
relationships between the classes.

Modeling Classes
The representation of a class has three compartments.

	
Figure 1: Class representation

From top to bottom this includes:
 • Name which contains the class name as well as the

stereotype, which provides information about this
class. Examples of stereotypes include <<interface>>,
<<abstract>> or <<controller>>.

 • Attributes lists the class attributes in the format
name:type, with the possibility to provide initial values
using the format name:type=value

 • Operations lists the methods for the class in the format
method(parameters):return type.

Operations and attributes can have their visibility annotated as
follows: + public, # protected, - private, ~ package

Relationship Description

Dependency

“...uses a…”

A weak, usually transient, relationship that illustrates that a
class uses another class at some point.

Figure 2: ClassA has dependency on ClassB

Association

“…has a...”

Stronger than dependency, the solid line relationship
indicates that the class retains a reference to another class
over time.

Figure 3: ClassA associated with ClassB

Aggregation

“…owns a…”

More specific than association, this indicates that a class is a
container or collection of other classes. The contained classes
do not have a life cycle dependency on the container, so
when the container is destroyed, the contents are not. This is
depicted using a hollow diamond.

Figure 4: Company contains Employees

Hot
Tip

Interfaces
Interface names and operations are
usually represented in italics.

	

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with UML

Composition

“…is part of...”

More specific than aggregation, this indicates a strong life
cycle dependency between classes, so when the container is
destroyed, so are the contents. This is depicted using a filled
diamond.

Figure 5: StatusBar is part of a Window

Generalization
“…is a…”

Also known as inheritance, this indicates that the subtype is a
more specific type of the super type. This is depicted using a
hollow triangle at the general side of the relationship.

Figure 6: Ford is a more specific type of Car

Association Classes
Sometimes more complex relationships exist between classes,
where a third class contains the association information.

	
Figure 7: Account associates the Bank with a Person

Annotating relationships
For all the above relationships, direction and multiplicity can
be expressed, as well as an annotation for the relationship.
Direction is expressed using arrows, which may be bi-directional.

The following example shows a multiple association, between
ClassA and ClassB, with an alias given to the link.

	
Figure 8: Annotating class relationships

Relationships can also be annotated with constraints to
illustrate rules, using {} (e.g. {ordered}).

Hot
Tip

Notes
Notes or comments are used across all
UML diagrams. They used to hold useful
information for the diagram, such as
explanations or code samples, and can
be linked to entities in the diagram.

	

Figure 13: Nested component diagram showing use of ports

Composite Structure Diagrams
Composite structure diagrams show the internal structure of a
class and the collaborations that are made possible.

The main entities in a composite structure diagram are parts,
ports, connectors, collaborations, as well as classifiers.

	
Object Diagrams
Object diagrams provide information about the relationships
between instances of classes at a particular point in time. As
you would expect, this diagram uses some elements from class
diagrams.

Typically, an object instance is modeled using a simple
rectangle without compartments, and with underlined text of
the format InstanceName:Class

	 Figure 9: A simple object diagram

The object element may also have extra information to model
the state of the attributes at a particular time, as in the case of
myAccount in the above example.

Component Diagrams
Component diagrams are used to illustrate how components
of a system are wired together at a higher level of abstraction
than class diagrams. A component could be modeled by one
or more classes.

A component is modeled in a rectangle with the
<<component>> classifier and an optional component icon:

Figure 11: AccountManagement depends on the CreditChecker services

Using the ball and socket notation, required or provided
interfaces are illustrated as follows

Figure 12: Required and provided interface notation

Port Connectors
Ports allow you to model the functionality that is exposed to
the outside world, grouping together required and provided
interfaces for a particular piece of functionality. This is
particularly useful when showing nested components.

	
Figure 10: UML representation of a single component

Assembly Connectors
The assembly connector can be used when one component
needs to use the services provided by another.

	

	

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with UML

Figure 18: Package merge example

BEHAVIORAL DIAGRAMS

Use Case Diagrams
Use case diagrams are a useful, high level communication tool
to represent the requirements of the system. The diagram
shows the interaction of users and other external entities with
the system that is being developed.

Graphical Elements

Entity Description

Actor Actors represent external entities in the system and can be
human, hardware or other systems. Actors are drawn using
a stick figure. Generalization relationships can be used to
represent more specific types of actors, as in the example.

Use Case A use case represents a unit of functionality that can interact
with external actors or related to other use cases. Use cases
are represented with a ellipse with the use case name inside.

Boundary Use cases are contained within a system boundary, which is
depicted using a simple rectangle. External entities must not
be placed within the system boundary

Graphical Elements

Notation Description

Includes Illustrates that a base use case may include another, which
implies that the included use case behavior is inserted into
the behavior of the base use case.

	

Hot
Tip

Modeling Patterns Using Collaborations
Sometimes a collaboration will be an
implementation of a pattern. In such
cases a collaboration is labeled with the
pattern and each part is linked with a
description of its role in the problem.

	

Deployment Diagrams
Deployment diagrams model the runtime architecture of the
system in a real world setting. They show how software entities
are deployed onto physical hardware nodes and devices.

Association links between these entities represent
communication between nodes and can include multiplicity.

Entity Description

Node Either a hardware or software element shown as a 3D box
shape. Nodes can have many stereotypes, indicated by an
appropriate icon on the top right hand corner.

An instance is made different to a node by providing an
underlined “name:node type” notation.

Artifact An artifact is any product of software development, including
source code, binary files or documentation. It is depicted
using a document icon in the top right hand corner.

Figure 17: Deployment diagram example

Package Diagrams
Package diagrams show the organization of packages and the
elements inside provide a visualization of the namespaces that
will be applied to classes. Package diagrams are commonly
used to organize, and provide a high level overview of, class
diagrams.

As well as standard dependencies, there are two specific
types of relationships used for package diagrams. Both are
depicted using the standard dashed line dependency with the
appropriate stereotype (import or merge).

 • Package Import
 Used to indicate that the importing namespace adds

the names of the members of the package to its
own namespace. This indicates that the package can
access elements within another package. Unlabeled
dependencies are considered imports.

 • Package Merge
 Used to indicate that the contents of both packages

are combined in a similar way to the generalization
relationship.

	

Figure 14: Diagram class with a Square and Line as part of its structure

Ports
Represent externally visible parts of the structure. They are
shown as named rectangles at the boundary of the owning
structure. As in component diagrams, a port can specify the
required and provided services.

Connectors
Connectors bind entities together, allowing them to interact
at runtime. A solid line is typically drawn between parts. The
name and type information is added to the connector using a
name:classname format. Multiplicity may also be annotated on
the connector.

Figure 16: Collaboration between a number of entities

	

	

	

Figure 15: A connector between two parts

Collaborations
Represents a set of roles that can be used together to achieve
some particular functionality. Collaborations are modeled using
a dashed ellipse.

Parts
Represent one or more instances owned by the containing
instance. This is illustrated using simple rectangles within the
owning class or component. Relationships between parts may
also be modeled.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with UML

Figure 20: Activity diagram

	

Graphical Elements

Section Description

Action Represents one step in the program flow, illustrated using a
rounded rectangle.

Constraints Action constraints are linked to an action in a note with text
of the format <<stereotype>>{constraint}

Start Node The start node is used to represent where the flow begins.
This is illustrated using a single back spot.

Activity Final Node Represents the end of all control flows within the activity.

Flow Final Node Represents the end of a single flow.

Control Flow Represents the flow of control from one action to the next
as a solid line with an arrowhead.

Object Flow If an object is passed between activities, a representation
of the object can be added in between the activities.
It is also possible represent object flow by adding a square
representing the object on either side of the control flow.

Decision Node An annotated diamond shape is used to represent
decisions in the control flow. This can also be used to
merge flows.

A decision node will have a condition documented that
needs to be met before that path can be taken.

Fork Node

Represented using a horizontal or vertical bar, a fork
node illustrates the start of concurrent threads. The same
notation can be used for the joining of concurrent threads.

Partition Swimlanes can be used in activity diagrams to illustrate
activities performed by different actors.

Region Regions are used to group certain activities together. A
stereotype is applied to the region to identify whether it is
iterative or parallel. Regions are illustrated using a dotted
rounded rectangle.

State Machine Diagrams
State machine diagrams are used to describe the state
transitions of a single object’s lifetime in response to events.
State machine diagrams are modeled in a similar way to activity
diagrams.

Entity Description

State States model a moment in time for the behavior of a classifier. It
is illustrated using a rounded rectangle.

Initial Post Represents the beginning of the execution of this state
machine. Illustrated using a filled circle.

Entry Point In cases when it is possible to enter the state machine at a later
stage than the initial state this can be used. Illustrated using an
empty circle.

Final State Represents the end of the state machine execution.
Represented using a circle containing a black dot.

Exit Point Represents alternative end points to the final state, of the state
machine. Illustrated using a circle with a X.

Hot
Tip

Multiplicity
Like normal relationships, all use case relationships
can include multiplicity annotations.

Figure 19: A simple use case diagram

Documenting Use Cases
Behind each use case there should be some text describing it.
The following are typical sections in a use case definition:

Section Description

Name and
Description

Use cases are should have verb names, and have a brief
description.

Requirements This could be a link to an external formal specification, or an
internal listing of the requirements that this use case will fulfill.

Constraints The pre and post conditions that apply to this use case’s
execution.

Scenarios The flow of events that occur during the execution of the use
case. Typically this starts with one positive path, with a number of
alternative flows referenced.

Activity Diagrams
Activity diagrams capture the flow of a program, including
major actions and decision points. These diagrams are useful
for documenting business processes.

	

Extends Illustrates that a particular use case provides additional
functionality to the base use case, in some alternative flows.
This can be read to mean that it’s not required to complete
the goal of the base use case.

Generalization Used when there is a common use case that provides basic
functionality that can be used by a more specialized use case.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with UML

Hot
Tip

Swimlanes
Swimlanes can be used to break up a sequence
diagram into logical layers. A swimlane can contain
any number of lifelines.

Messages
The core of sequence diagrams are the messages that are
passed between the objects modeled. Messages will usually be
of the form messagename(parameter).

A thin rectangle along the lifeline illustrates the execution
lifetime for the object’s messages.

Messages can be sent in both directions, and may skip past
other lifelines on the way to the recipient.

Entity Description

Synchronous A message with a solid arrowhead at the end. If the
message is a return message it appears as a dashed line
rather than solid.

Asynchronous A message with a line arrowhead at the end. If the
message is a return message it appears as a dashed line
rather than solid.

Lost A lost message is one that gets sent to an unintended
receiver, or to an object that is not modeled in the
diagram. The destination for this message is a black dot.

Found A found message is one that arrives from an unknown
sender, or from an object that is not modeled in the
diagram. The unknown part is modeled as a black dot.

Self Message A self message is usually a recursive call, or a call to
another method belonging to the same object.

Hot
Tip

Managing Object Lifecycle
Objects don’t need to all appear
along the top of the sequence
diagram. When a message is
sent to create an object, the
element’s lifeline can begin at
the end of that message.
To terminate the lifeline, simply
use an X at the end of the
dashed line.

	

Fragments
Fragments are sections of logic that are executed given a

Hot
Tip

Transitions: Triggers, Guards, Effects
Triggers cause the transition, which is usually a
change in condition. A guard is a condition that must
evaluate to true before the transition can execute.
Effect is an action that will be invoked on that object.

INTERACTION DIAGRAMS

Interaction diagrams are a subset of behavioral diagrams that
deal with the flow of control across the modeled system.

Sequence Diagrams
Sequence diagrams describe how entities interact, including
what messages are used for the interactions. All messages are
described in the order of execution.

Along with class and use case, sequence diagrams are the
most used diagrams for modeling software systems.

Lifeline Objects
A sequence diagram is made up of a number of lifelines. Each
entity gets its own column. The element is modeled at the top
of the column and the lifeline is continued with a dashed line.
The following are the options for lifeline objects, with the final
three the being most specific.

Entity Description

Actor Actors represent external entities in the system. They can be
human, hardware or other systems.

Actors are drawn using a stick figure.

Transition Represented as a line with an arrowhead. Transitions illustrate
movement between states. They can be annotated with a
Trigger[Guard]/Effect notation. States may also have self
transitions, useful for iterative behavior.

State A state can also be annotated with any number of trigger/effect
pairs, which is useful when the state has a number of transitions.

Nested States States can themselves contain internal state machine diagrams.

State Choice A decision is illustrated using a diamond, with a number of
transitions leaving from the choice element.

State junction Junctions are used to merge a number of transitions from
different states. A junction is illustrated using a filled circle.

Terminate
State

Indicates that the flow of the state machine has ended,
illustrated using an X

History State History states can be used to model state memory, where the
state resumes from where it was last time. This is drawn using a
circle with a H inside.

Concurrent
Region

A state can have multiple substates executing concurrently,
which is modeled using a dashed line to separate the parallel
tracks. Forks and merges (see activity diagram) are used to split/
merge transitions.

General Lifeline Represents an individual entity in the sequence diagram,
displayed as a rectangle. It can have a name, stereotype or
could be an instance (using instance:class)

Boundary

Boundary elements are usually at the edge of the system,
such as user interface, or back-end logic that deals with
external systems.

Control Controller elements manage the flow of information for a
scenario. Behavior and business rules are typically managed
by such objects.

Entity Entities are usually elements that are responsible for holding
data or information. They can be thought of as beans, or
model objects.

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Network Security
Hadoop
UML
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

rev. 1.001 10/08/09

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with UML

RECOMMENDED BOOKABOUT THE AUTHORS

ISBN-13: 978-1-934238-75-2
ISBN-10: 1-934238-75-9

9 781934 238752

50795

are defined in free form instead of lifelines. The focus of this
diagram is object relationships between boundary, control and
entity types.

Messages between the participants are numbered to provide
sequencing information.

Figure 22: Simple communication diagram

Interaction Overview Diagrams
An interaction overview diagram is a form of activity diagram
where each node is a link to another type of interaction
diagram. This provides a useful way to give high level
overviews or indexes of the key diagrams in your system.

	

Figure 23: Interaction Overview Diagram
	

James Sugrue has been editor at both Javalobby
and Eclipse Zone for over two years, and loves every
minute of it. By day, James is a software architect at
Pilz Ireland, developing killer desktop software using
Java and Eclipse all the way. While working on desktop
technologies such as Eclipse RCP and Swing, James also
likes meddling with up and coming technologies such
as Eclipse e4. His current obsession is developing for

the iPhone and iPad, having convinced himself that it’s a turning point for the
software industry.

particular condition. These fragments can be of many different
types.

Entity Description

alt Models if then else blocks

opt Models switch statements

break For alternative sequence of events

par Concurrent blocks

seg Set of messages to be processed in any order before continuing

strict Set of messages to be processed in strict order before continuing

neg Invalid set of messages

critical Critical section

ignore Messages of no interest

consider The opposite to ignore.

assert Will not be shown if the assertion is invalid

loop Loop fragment

	
Figure 21: Sequence Diagram Fragment

Communication Diagrams
Also known as a collaboration diagram, communication
diagrams are similar to sequence diagrams, except that they

Designers Erich Gamma, Richard Helm, Ralph Johnson,
and John M. Vlissides put together this excellent guide to
offer simple solutions to common design problems. They
first describe what patterns are and how they can help
you design object-oriented software. Then they cover how
patterns fit into the development process and how they
can be leveraged to efficiently solve design problems. Each
pattern discussed is from a real system and is based on a
real-world example.

BUY NOW
books.dzone.com/books/design-patterns-elements

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

